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Shapes of Cells in Polymer Foams 

GEORGE GIOUMOUSIS, ShdZ Development Company, 
Ewyville,  California 

INTRODUCTION 

The mechanical properties of polymer foams depend perhaps more on the 
geometry of the foam than on the bulk mechanical propert,ies of the polymer 
itself. Of the various sorts of forces which determine the geometry of a 
foam, one, the surface tension, is an equilibrium effect, while viscosity is not. 
The problem is idealized in this paper by the neglect of the latter. With 
the further neglect of gravitational forces (which are readily seen to be 
negligible) the problem of the shape reduces to one of minimizing the sur- 
face energy, and thus of minimizing the surface area. 

The distribution of position and size of the cells in a foam is something over 
which some control can be exercised during their formation. There is thus 
some arbitrariness in the sort of distribution chosen for calculation; the 
simplest choice, regularly spaced cells of equal size, was the one actually 
made. The more drastic reduction to a two-dimensional problem was also 
made, in order to reduce the partial differential equations which would 
otherwise be involved to ordinary ones. 

The problem was actually solved by means of the rigorous theory based 
on the calculus of variations. Once the solution was at  hand, however, it 
was seen that it could also be derived from rather simple considerations 
based on Laplace’s equtition. Since the rigorous proof is quite abstract and 
does not contribute to one’s physical understanding, it will not be given 
here. It is planned to publish it elsewhere as part of a comprehensive 
collection of calculations of surface problems. 

THE MODEL 

As mentioned above, the model is to be taken xj a two-dimensional one. 
This means that thc voids will have the shape of distorted, infinitely long, 
cylinders, or that thc general structure will be that of a honeycomb. 
The shape taken by such a system, under surface forces only, is such as to 
minimize the surface area for constant volume. For a two-dimensional 
model of the sort here considered, this is equivalent to minimizing the sum 
of the perimeters for constant area. 

It is observed by microscopic or sometimes even by direct observation 
that generally only three cell walls intersect a t  a vertex. The only regular 
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Fig. 1. The three regular plane lattices. 
( b )  Square lattice, four walk per vertex. 
vertex. 

(a) Trisngular lattice, six walla per vertex. 
(c) Hexagonal lattice, three walk per 

lattice with this property is the hexagonal, as Figure 1 shows. For this 
reason it will be assumed that the foam is based on a hexagonal lattice. 

It is also observed that the shape of the cell walls is more or less the same 
whether all the cells are nearly the same size or whether there is a distribu- 
tion of cell sizes. For simplicity then, the limiting case of all cell sizes 
equal will be taken. Figure 2 shows this. 



SHAPES OF CELLS IN POLYMER FOAMS 949 

Fig. 2. Idealized model of a foam. The enlarged portion is one twelfth of a cell. 

The symmetry in this model allows one to work with one twelfth of a 
cell, as shown in Figures 2 and 3. Symmetry also requires that the curve, 
as shown in Figure 3, be at  right angles to the two dotted lines. For the 
foam as a whole (Fig. 2), the condition is that the perimeter (of all the cell 
walls) be a minimum subject to constant area (of the cross-hatched region). 
For the one twelfth of a cell the condition is of minimum length subject to 
constant area and also subject to crossing both dotted lines at right angles. 

SOLUTION BY LAPLACE'S EQUATION 

Laplace's equation is usually given in the form's2 

where PI - Pz is the pressure difference across the interface, y the surface 
tension of the interface, and R1 and Rz the principal radii of curvature of 
the interface. The interface wil l  be concave toward the side with greater 
pressure. 

The dimensions of the cells are sufficiently small that the effect of gravity 
may be neglected, whence it is seen that the pressure difference is constant. 
In a general problem constancy of pressure does not in itself determine the 
shape, since it is only a single constraint on the two variables R1 and Rz. 
However, the two-dimensional or honeycomb model assumed here implies 
that one of the two principal radii (say Rz) is infinite, so that the other one is 
thereby required to be constant 
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Fig. 3. One twelfth of a cell in the idealized foam model. The shape is given by 
the condition that the length of the curve be a minimum subject to const.ant area of the 
croea-hatched portion. 

Since the circle is the only plane curve with constant radius of curvature 
the curve in Figure 3 must be composed of arcs of circles. 

For the calculations it is 
more convenient to use t.he density of the foam divided by the density of 
bulk material, that is, the fraction of the total area in Figure 2 which is 
crosshatched. In what follows, unless otherwise stated, t,his concept will 
be what is denoted by ((density.” It is equivalent to (‘per cent solids by 
volume.” 

Let the base of the triangle in 
Figure 3 be of unit length. 

The basic parameter in a foam is the density. 

At this point some geometry is in order. 
Let the curve be given by the equation 

Y = Y ( X )  

Y = d X  

The dotted line to the left is given by 
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and that to the right by 

X = l  

The area is 

A = sox‘ ( 4 3 X ) d X  +J& Y ( X ) d X  (5) 

Since the area of the triangle is d / 2 ,  the density is 2 A / 1 / 3 .  
ard formula, the length of the curve is 

By a stand- 

L =J& d 1  + [Y’(X)]ZdX (6) 

m 

Fig. 4. A sketch of the form of the solution for d > &. The parameters are R, Xi, 
and Y,. 

The conditions on Y ( X ) ,  dictated by the fact that the triangle is only a 
tiny fraction of the whole structure, are that it be positive and that it cross 
the two dotted lines [eqs. (4a) and (4b)l at right angles. The shape of the 
curve is given by the requirement that the length be a minimum at con- 
stant area. All this may be summarized by Y ( X )  such that 

L = minimum (7%) 
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A = constant (7b) 

0 I Y(X) (74 

Y'(X1) = -l/& ( 7 4  

Y'(1) = 0 (7e) 

If A is sufficiently large, it is possible to draw an arc of a circle centered 
at the apex of the triangle which will satisfy all the conditions of eqs. (2) 
and (7c-e). Figure 4 shows this. If the radius is R,  the area of the seg- 
ment of the circle is (1 /12)d2 and the density 

Clearly this is the solution up to R = &, at which point the density be- 
comes 

= 9.31'% (9) 

For density of less than 9%, a circle can still be draw, .but it violates 
condition (7c). Some idea of the form of the solution can be gotten by 
considering the case of d << 0.09, that is, nearly'zero density, as shown in 
Figure 5. It is obvious that the shortest path here will be nearly a straight 
line, as shown, with a jog a t  the left to satisfy condition (7d). Though 
Laplace's equation is not strictly valid for d < 0.09, since its use leads to a 
solution which violates condition (7c), one may still attempt to use it a t  the 
left-hand end where (7c) is least likely to be violated. In that caae the 
solution would consist of a circular arc at  the left and a portion of the X- 
axis to the right. Condition (7d) requires that the center of the circle be 
on the line Y = 2X, and physically it is evident that the circle must be 
tangent to the X-axis. Then if the point of tangency be denoted by X2, 
the center of the circle is at  X = X2, Y = 4x2, the radius of the circle 
is fix2, and since 2(X2 - XI) = fix2 

XI = (1 - T)x2 4 . 
By comparison with eq. (9), the area under the curve is 

A = (1 4 - , ) X 2  371. 
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Fig. 5. A eketch of the form of the solution for d < &. The parametera are R, Xi, 
and X3. 

and the density 

The above results may be summarized as follows: The independent 
There are high and low density forms of the parameter is the density. 

solution separated by a critical density 

= 9.31% (13) 

The most important dependent parameter is the radius of curvature R,  
given by 

R = dg dl - d = 1.82 dl - d ford 2 do (14a) 
7r 
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3 

l - -  
2/2 = 5.68 2/2 ford 5 do R = d  ?r 

2/12 
A plot of R vs. d is given in Figure 6. 

2.5 
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Fig. 6. Plot of radius of curvature R vs. density d. 

d. % 

Fig. 6. Plot of radius of curvature R vs. density d. 

The remaining dependent parameters, as defined above and in Figures 4 
and 5, are: 

Xi  = 1 - R/2 

Y s = f i - R  

for d 2 do, and 

Xz = R / f i  

Xi = Xz - R / 2  = - - 

ford I do. 
These formulas complete the formal solution of the variational problem. 

The derivation as given above is not completely rigorous in the mathematical 
sense, especially the part preceding eq. (10). However, as mentioned above, 
a mathematical derivation based on the calculus of variations does exist, 
so that one may have confidence in the results. 

DISCUSSION 

The detailed application of the above calculations to real foams is beyond 
the scope of this paper. The extent to which the two-dimensional model 
simulates a real foam may be seen from Figures 7 and 8. The first is a 
photomicrograph of Styrofoam 22, which is a large cell uniform polystyrene 
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Fig. 7.. Styrofoam 22, about 3% solid. 16X. 
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Fig. 8. Solution of the two-dimensjonal problem for d = 3%. 

foam, with a “density” of about 3% solids by volume. The second is a 
sketch of the solution to the two-dimensional problem for d = 3%. 

The combination of Laplace’s equation [eq. (l)] with eq. (14) (and Fig. 
6) can be used to give a qualitative picture of the process of foaming. For 
density nearly unity, and thereby small radius of curvature R, the equilib- 
rium pressure is high, so that a nucleating agent is needed to help the bubble 
form. However, once the bubble exists a runaway situation develops, 
since with decrease in density the pressure necessary for surface equilibrium 
also decreases. This decrease in equilibrium pressure continues until the 
critical density do is reached, at which point it reverses and begins to in- 
crease. 

For densities lower than the critical density the equilibrium solution con- 
tains flat segments of zero thickness. In actual foams there are thin, 
nearly flat segments. By Laplace’s equation the pressure difference be- 
tween polymer and gas must be low for these flat segments, while it must 
grow increasingly great for decreasing density in the sharply curved regions. 
Thus the polymer in the cell faces must be at  a higher pressure than in the 
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vertices, and it is this pressure difference which leads to flow from the walls 
to the vertices and to thinning of the walls. 

The increase in equilibrium pressure with decreasing density means that a 
point of balance can be reached at  which the equilibrium pressure bas grow 
as large as the pressure due to the foaming agent. This is not truly a point 
of equilibrium, but can be close to one insofar as the viscosity is high and cell 
wall thinning is a slow process. 

Although the model on which these considerations are based is a two- 
dimensional one, it is clear that the conclusions which are drawn will be at  
least qualitatively correct for three-dimensional foams. There must be a 
critical density in three dimensions, and in fact a t  a greater density than 
9.31%. Thus, the above discussion is valid also for real, three-dimensional 
foams. 
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Synopsis 
The shape of the cells in a foam is thought to be determined by the interplay between 

viecoaity and surface tension. In order to 888e88 the relative importance of the two, a 
simplified model is set up which considers 0d.y surface tension. It ie assumed that the 
cella are of uniform c r m  section in one direction and are baaed on a regular hexagonal 
lattice in the other two. The resulting two-dimensional problem is solved by means of 
the calculus of variations. For high density foams the voids take the form of circles 
centered within each hexagonal cell. For low densities (below about 9% solids) the 
solid part is concentrated at the vertices, between tangential circular areaq connected 
by straight segments of zero thickness. This illustrates the importance of viscosity, 
since in real foam the cell walls wiU break if too thin, while the thinner the walls become, 
the greater is the effect of Viscosity in opposing further thinning. 

R&WQ 
On croit que la forme des alvBolea dans une mousse est dBtermin6e par une comp6tition 

entre la viscosiM et la tension mperficielle. En vue de fixer l’importance relative de 
cea d e u  facteum, on construitun modble bpl i f i6  qui ne tient compte que de la tension 
mpperficielle. On y suppose que lee alv60lea poddent une section transversale uni- 
forme dam une des directions et sent con8tmitea mivant un r6seau hexagonal r6gulier 
dans les deux autres. Le problhme bidimensionnel qui en rBsulte est rBsolu par le calcul 
d a  variations. Pour dea mou- de haute densiM; les videa prennent la forme de 
cercles concentriques 8, chaque alvBole hexagonale. Pour des rnoussea de faible densit6 
(mobs de 9% de solide), la partie solide est concentrbe aux sommeta, entre des surfaces 
circdsjrea tangentiellea, reliba par des segmenta droita d’bpaieseur nulle. On illustre 
I’importance de la viscositd, puisque dans les mouws rBelles les parois de l’alv6ole 
devraient se cwer  si ellea Btaient trop minces, tandis que, au plus minces sont les 
parois, au plus grand eat I’effet de la ViscosiM qui s’oppose il un amincissement ul- 
Grieui. 

Zusammenfassung 
Die Gestalt der Zellen in einem S~haurn ist durch das Widerspiel zwischen Viskoaitat 

Um die relative Bedeutung der beiden Grown und Oberfllchenspannung beethunt. 
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abzuschiitzen, wird ein einfaches Model1 verwendet, das nur die Oberfliichenspannung in 
Betracht zieht. Es wird angeonmmen, dass die Zellen in einer Richtung einheitlichen 
Querschnitt besitzen und in den andern beiden ein regelm&miges hexagonales Gitter 
bilden. Dm sich ergebende zweidimensionale Problem wird durch Variationsrechnung 
gelost. Bei Schiiumen hoher Dichte nehmen die Leerstellen die Gestalt von Kreisen an 
die in jeder hexagonalen Zelle zentriert sind. Bei niedriger Dichte (unterhalb 9% 
Festkorper) ist der feste Anteil an der Spitze, zwischen sich beriihrenden Kreisfliichen, 
durch gerade Segmente der Dicke Null verbunden, konzentriert. Dadurch wird die 
Bedeutung der Viskositat beleuchtet, da in wirklichen Schaumen die Zellwilnde brechen 
werden, sobald me zu dhnn and, wllhrend der Einfluss der Viskositiit zur Verhinderung 
eines weiteren Diinnerwerdens um so grosser ist, je dunner die Winde werden. 
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